手机浏览器扫描二维码访问
“咦,这小伙子的答题速度还不算慢嘛。”
讲台之上,作为监考老师的吴林一直在观察着王卿的答题。
当他看到别人还在做选择题的时候,王卿已经开始做大题了,还是有一丝惊讶的。
“就是不知道这小伙子的正确率怎么样,听命题组的老师说,这次的数学题非常难,就是为了杀一杀学生们的锐气。”
王卿没有在意这些,他做题的速度非常之快,还不到一个小时的时间,他就来到了最后一道大题。
“做完这道题,就可以回去了。”
王卿摩拳擦掌,跃跃欲试。
题目:证明对于任意的正实数x和y,都有(2x^x)*(y^y)≥(x^2)*(y^2)成立。
“这题,有一定难度啊。”
他开始思考解题的思路。
首先,他注意到这是一个不等式证明题,需要通过推导和逻辑推理来证明不等式的成立。
王卿将题目中的不等式稍作变换,将两边同时取对数,得到ln((2x^x)*(y^y))≥ln((x^2)*(y^2))。
“接下来,只要运用对数的性质和乘法法则,将不等式进行变换就可以了。”
王卿在草稿纸上写下,xln(2x)+yln(y)≥2ln(x)+2ln(y)。
“两边都包含了ln(x)和ln(y),通过比较系数的方式来证明不等式的成立就可以了。”
王卿继续在草稿纸上写下,他将不等式分解为两个部分进行比较,即xln(2x)≥2ln(x)和yln(y)≥2ln(y)。
针对第一个不等式,他运用对数和指数的性质进行变换,得到xln(2)+xln(x)≥2ln(x)。
然后,他将两边的ln(x)相消,得到xln(2)≥ln(x)。
“左边是常数xln(2),而右边是关于x的对数函数ln(x)。”
“这是一个典型的关于x的线性函数与对数函数的比较。”
很显然,在x>0的范围内,对数函数的增长速度要远远大于线性函数。
因此,得出结论xln(2)≥ln(x)对于所有的正实数x成立。
接下来,他将同样的推导方法应用于第二个不等式,得到yln(y)≥2ln(y)。
“左边是常数yln(y),而右边是关于y的对数函数ln(y)。”
“根据对数函数的性质,yln(y)≥2ln(y)对于所有的正实数y成立。”
王卿完成了最后一道难度系数较高的数学试题后,他满意地审视着自己的答卷。
“老师,交卷。”
他仔细检查了一遍,确认没有问题之后,再次举起手示意监考老师收卷。
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...
一觉醒来,世界大变。熟悉的高中传授的是魔法,告诉大家要成为一名出色的魔法师。居住的都市之外游荡着袭击人类的魔物妖兽,虎视眈眈。崇尚科学的世界变成了崇尚魔法,偏偏有着一样以学渣看待自己的老师,一样目光异样的同学,一样社会底层挣扎的爸爸,一样纯美却不能走路的非血缘妹妹不过,莫凡发现绝大多数人都只能够主修一系魔法,自己却是全系全能法师!...
化神境修士陈默,与小师妹双双陨落后,竟然重回地球的高三时代?!前世初恋,陈默不屑一顾。前世敌人,陈默一拳打爆。前世你看我不起?今世我让你望尘莫及!...
啥,老子堂堂的漠北兵王,居然要当奶爸?好吧,看在孩子他妈貌若天仙的份儿上,老子勉强答应了...
陆原语录作为一个超级富二代装穷是一种什么体验?别拦着我,没有人比我更有资格回答这个问题!...
心潮澎湃,无限幻想,迎风挥击千层浪,少年不败热血!...