手机浏览器扫描二维码访问
第165章数学殿堂的新征程
学府内,戴浩文的教诲之声犹在耳畔回荡,学子们在向量知识的海洋中畅游一番后,又迎来了新的知识篇章。
晨曦微露,戴浩文早早步入教室,神色庄重而又充满期待。
“诸位学子,过往我们一同领略了向量之奇妙,今时今日,吾将引领尔等踏入又一深邃之数学领域——数列。”戴浩文声音朗朗。
学子们听闻,目光中皆闪烁着好奇与求知的光芒。
戴浩文于黑板之上,轻轻写下一列数字:“1,3,5,7,9。。。。。。”
“此乃一简单之数列,观之,可有何规律?”先生问道。
学子们纷纷凝眸思索,不多时,便有一学子起身答道:“此数列相邻两数之差皆为2。”
戴浩文微微颔首,道:“善。此数列相邻两项之差相等,吾等称之为等差数列。”
先生继而详细阐述等差数列之定义:“若一数列从第二项起,每一项与它的前一项之差等于同一个常数,此数列即为等差数列。此常数称为公差,通常以字母d表示。”
为使学子们更明其理,戴浩文举例道:“若有一等差数列,首项为a1,公差为d,则其第二项为a1+d,第三项为a1+2d,第四项为a1+3d,以此类推。”
随后,戴浩文又在黑板上列出另一数列:“2,4,8,16,32。。。。。。”
“此数列又有何特点?”又问道。
众学子陷入沉思,须臾,有一学子道:“此数列后一项皆为前一项之两倍。”
戴浩文微笑道:“妙哉!此数列相邻两项之比相等,吾等称之为等比数列。”
接着讲解等比数列之定义:“若一数列从第二项起,每一项与它的前一项之比值等于同一个常数,此数列即为等比数列。此常数称为公比,通常以字母q表示。”
戴浩文举例说明等比数列之通项公式:“若有一等比数列,首项为a1,公比为q,则其第二项为a1×q,第三项为a1×q2,第四项为a1×q3,依此类推。”
学子们认真记录,戴浩文又道:“数列之应用,广泛于生活之中。”
他言道:“若一商人逐月累存银两,首月存一两,次月存三两,依此类推,每月皆比前月多存二两,一年之后,其共存银几何?此可借等差数列求解。”
戴浩文在黑板上写下详细推导计算过程,学子们恍然大悟。
戴浩文又道:“再如有一果园,初植一树,次年此树分杈为二,后年每树皆分杈为前一年之两倍,五年之后,果园共有几树?此可用等比数列计算。”
他再次演示解题之法,学子们听得津津有味。
接着,戴浩文开始讲解数列的求和公式。
对于等差数列,道:“其前n项和Sn=n×(a1+an)2,其中an为第n项。”
对于等比数列,当公比q不等于1时,“其前n项和Sn=a1×(1-q^n)(1-q)。”
为让学子们熟练掌握,戴浩文给出诸多练习题,让学子们当堂演练。
学子们埋头苦算,戴浩文则在教室中巡视,不时指点一二。
时至中午,阳光渐烈,然学子们学习之热情丝毫不减。
休息片刻,下午之课程继续。
一觉醒来,世界巨变。藏匿于西湖下的图腾玄蛇,屹立时如摩天大厦。游荡在古都城墙外的亡灵大军,它们只听从皇陵下传出的低语。埃及金字塔中的冥王,它和它的部众始终觊觎着东方大地!伦敦有着伟大的驯龙世家。希腊帕特农圣山上,有神女祈福。威尼斯被誉为水系魔法之都。奈斯卡巨画从沉睡中苏醒。贺兰山风与雨侵蚀出的岩纹,组成一只眼,山脊...
简然以为自己嫁了一个普通男人,谁料这个男人摇身一变,成了她公司的总裁大人。不仅如此,他还是亚洲首富帝国集团最神秘的继承者。人前,他是杀伐果断冷血无情的商业帝国掌舵者。人后,他是一头披着羊皮的狼,把她啃得连骨头也不剩。...
穿越加重生,妥妥主角命?篆刻师之道,纳天地于方寸,制道纹于掌间!且看少年段玉重活一世,将会过出怎样的精彩?...
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...
化神境修士陈默,与小师妹双双陨落后,竟然重回地球的高三时代?!前世初恋,陈默不屑一顾。前世敌人,陈默一拳打爆。前世你看我不起?今世我让你望尘莫及!...
陆家有两个女儿,小女儿是天上的月亮,大女儿是阴沟里的死狗。陆妈你长得不如你妹妹,脑子不如你妹妹,身材不如你妹妹,运气不如你妹妹,你有什么资格过得好,有什么资格幸福?陆微言姐姐,你的钱是我的房子是我的,你男朋友也是我的。你就安心地当又穷又没人要的老处女吧。陆一语凭什么?我也肤白貌美大长腿好么?分分钟能找个男人...