手机浏览器扫描二维码访问
戴浩文耐心解释道:“先将其化为√((x-1)2)=|x-1|,再设x-1=t,若要三角换元,可令t=sinθ。”
赵婷疑惑道:“先生,为何有时设x=cosθ,有时又设x=sinθ呢?”
戴浩文道:“此需视具体问题而定。若方程或式子之形式与cosθ或sinθ之特性相关,便按需设之。”
张明道:“先生,三角换元法在求定积分时可有应用?”
戴浩文点头道:“自然有。譬如求∫(0到1)√(1-x2)dx,设x=sinθ,则可将其化为三角函数之积分,求解更为简便。”
说罢,戴浩文在黑板上详细推演计算过程。
“诸位且看,如此换元之后,积分上下限亦需相应变换。”
学子们目不转睛,仔细聆听。
王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”
戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数f(x)=√(2-x-x2),先将其内部配方,再进行三角换元。”
戴浩文边讲边写,学子们不时点头,似有所悟。
李华又问:“先生,三角换元法与均值换元法可有相通之处?”
戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”
小主,这个章节后面还有哦,请点击下一页继续阅读,后面更精彩!
。。。。。。
戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。
不知不觉,日已西斜。
戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”
学子们躬身行礼:“谨遵先生教诲。”
众人散去,然对三角换元法之探索,方兴未艾。
又过数日,课堂之上。
戴浩文道:“今来考查一番尔等对三角换元法之掌握。”
遂出一题:求函数y=x+√(2-x2)的最大值。
学子们纷纷提笔计算。
片刻后,赵婷起身道:“先生,学生设x=√2cosθ,解得最大值为√2。”
戴浩文微微颔首:“不错。那再看此题,若x、y满足x2+y2-2x+4y=0,求x-2y的最大值。”
众学子再度陷入沉思。
张明道:“先生,可否设x-2y=z,将其转化为直线与圆的位置关系,再用三角换元求解?”
戴浩文抚掌大笑:“妙哉!果能举一反三。”
就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。
。。。。。。
时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。
喜欢文曲在古请大家收藏:(www。aiquwx。com)文曲在古
这个江湖。有武夫自称天下第二一甲子。有剑仙一剑破甲两千六。有胆小的骑牛道士肩扛两道。但一样是这个江湖,可能是江湖儿郎江湖死,才初出茅庐,便淹死在江湖中。可能对一个未入江湖的稚童来说,抱住了一柄刀,便是抱住了整座江湖。而主角,一刀将江湖捅了个透!临了,喊一声小二,上酒...
心潮澎湃,无限幻想,迎风挥击千层浪,少年不败热血!...
因为,她是真的很想念他,很想,很想,那股想要他的感觉,也越来越强烈。他们本来是夫妻,在这种事情上根本就没有必要压制。而且,此刻她也只是手受伤了而已...
啥,老子堂堂的漠北兵王,居然要当奶爸?好吧,看在孩子他妈貌若天仙的份儿上,老子勉强答应了...
一觉醒来,世界大变。熟悉的高中传授的是魔法,告诉大家要成为一名出色的魔法师。居住的都市之外游荡着袭击人类的魔物妖兽,虎视眈眈。崇尚科学的世界变成了崇尚魔法,偏偏有着一样以学渣看待自己的老师,一样目光异样的同学,一样社会底层挣扎的爸爸,一样纯美却不能走路的非血缘妹妹不过,莫凡发现绝大多数人都只能够主修一系魔法,自己却是全系全能法师!...
盛夏不老不死了上千年,看尽了想到想不到的各种热闹。没想到,她却也成了别人眼里的热闹,在一群不靠谱参谋的参谋下,屡战屡败,屡败屡战本闲初心不改,这本立志要写回言情了!...